@@ -0,0 +1,10 @@ | |||
source_images* | |||
sources | |||
output | |||
playing-around | |||
__pycache__ | |||
*.png | |||
*.R | |||
*.tif | |||
*.tiff | |||
*.jpg |
@@ -0,0 +1,3 @@ | |||
lxml | |||
wand | |||
PyExifTool |
@@ -0,0 +1,110 @@ | |||
<?xml version="1.0" encoding="UTF-8" standalone="no"?> | |||
<!-- Created with Inkscape (http://www.inkscape.org/) --> | |||
<svg | |||
width="6000" | |||
height="3000" | |||
viewBox="0 0 6000 3000" | |||
version="1.1" | |||
id="svgroot" | |||
sodipodi:docname="canvas.svg" | |||
inkscape:version="1.1 (ce6663b3b7, 2021-05-25)" | |||
enable-background="new" | |||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" | |||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" | |||
xmlns:xlink="http://www.w3.org/1999/xlink" | |||
xmlns="http://www.w3.org/2000/svg" | |||
xmlns:svg="http://www.w3.org/2000/svg" | |||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" | |||
xmlns:cc="http://creativecommons.org/ns#" | |||
xmlns:dc="http://purl.org/dc/elements/1.1/"> | |||
<style> | |||
.thermal_image { | |||
opacity: .5 ; | |||
} | |||
g.tile[data-direction='down'] { | |||
opacity: 1; | |||
} | |||
<!-- g.tile[data-direction='down'] .tile-offset-corr { | |||
transform: translate(120px, 0px) | |||
} --> | |||
</style> | |||
<defs id="defs2"> | |||
<!-- <filter | |||
xmlns="http://www.w3.org/2000/svg" | |||
style="color-interpolation-filters:sRGB;" | |||
inkscape:label="Blur" | |||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" | |||
id="filter156128" | |||
x="-0.2" y="-0.2" | |||
width="1.5" | |||
height="1.5"> | |||
<feGaussianBlur | |||
result="blur" | |||
in="fbSourceGraphic" | |||
id="feGaussianBlur156190" | |||
stdDeviation="45 35"/> | |||
</filter> | |||
<mask | |||
maskUnits="userSpaceOnUse" | |||
id="tilefademask"> | |||
<rect | |||
id="rect156378" | |||
width="640" | |||
height="512" | |||
x="-180" | |||
y="-25" | |||
style="fill:#ffffff;filter:url(#filter156128)" | |||
transform="matrix(0.77703373,0,0,0.74018882,207.24036,100.70559)" /> | |||
</mask> --> | |||
</defs> | |||
<sodipodi:namedview | |||
id="base" | |||
pagecolor="#ffffff" | |||
bordercolor="#666666" | |||
borderopacity="1.0" | |||
inkscape:pageopacity="0.0" | |||
inkscape:pageshadow="2" | |||
inkscape:zoom="0.7" | |||
inkscape:cx="745" | |||
inkscape:cy="535" | |||
inkscape:document-units="px" | |||
inkscape:current-layer="tiles" | |||
showgrid="false" | |||
units="px" | |||
scale-x="1" | |||
inkscape:window-width="1920" | |||
inkscape:window-height="1080" | |||
inkscape:window-x="0" | |||
inkscape:window-y="27" | |||
inkscape:window-maximized="1" | |||
inkscape:pagecheckerboard="0" /> | |||
<metadata | |||
id="metadata5"> | |||
<rdf:RDF> | |||
<cc:Work | |||
rdf:about=""> | |||
<dc:format>image/svg+xml</dc:format> | |||
<dc:type | |||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /> | |||
</cc:Work> | |||
</rdf:RDF> | |||
</metadata> | |||
<g | |||
inkscape:label="tiles" | |||
inkscape:groupmode="layer" | |||
id="tiles" | |||
transform="translate(0,0)" | |||
style="" /> | |||
<g | |||
inkscape:label="tile_rows" | |||
inkscape:groupmode="layer" | |||
id="tile_rows" | |||
transform="translate(0,0)" | |||
style="" /> | |||
</svg> |
@@ -0,0 +1,263 @@ | |||
import os | |||
import argparse | |||
import lxml.etree as ET | |||
import subprocess | |||
import flirimageextractor | |||
import cv2 | |||
import numpy as np | |||
from pathlib import Path | |||
from wand.image import Image | |||
from osgeo import gdal | |||
from osgeo import osr | |||
arg_parser = argparse.ArgumentParser(description='Export SVG composition of FLIR images as TIFF with thermo layer') | |||
arg_parser.add_argument('Input', | |||
metavar='input_svg', | |||
type=str, | |||
help='Path to the input SVG file cotaining xlinks to FLIR images') | |||
arg_parser.add_argument('Output', | |||
metavar='output_tiff', | |||
type=str, | |||
help='Output filename') | |||
args = arg_parser.parse_args() | |||
dirname = os.path.dirname(__file__) | |||
INPUT_PATH = os.path.join(dirname, args.Input) | |||
INPUT_DIR = os.path.split(INPUT_PATH)[0] | |||
TEMP_MAP_THERMALPNG_SVG_PATH = os.path.join(INPUT_DIR, 'map_thermalpng.svg') | |||
TEMP_MAP_THERMALPNG_PATH = os.path.join(INPUT_DIR, 'map_thermalpng.png') | |||
TEMP_MAP_PREVIEW_PATH = os.path.join(INPUT_DIR, 'map_preview.png') | |||
THERMALPNG_DIR = 'thermalpngs' | |||
OUTPUT_PATH = os.path.join(dirname, args.Output) | |||
def make_thermalpng_tiles(): | |||
""" | |||
Extract thermal infomration as greyscale PNG-16 (temp * 1000 to retain some decimals) | |||
and save the png tiles | |||
""" | |||
Path(os.path.join(INPUT_DIR, THERMALPNG_DIR)).mkdir(parents=True, exist_ok=True) | |||
png_output_dir = os.path.join(INPUT_DIR, THERMALPNG_DIR) | |||
for root_path, directories, file in os.walk(os.path.join(dirname, INPUT_DIR)): | |||
for file in file: | |||
if(file.endswith(".jpg")): | |||
print('Extracting thermal info from ' + file) | |||
full_filepath = os.path.join(root_path, file) | |||
flir = flirimageextractor.FlirImageExtractor() | |||
flir.process_image(full_filepath) | |||
thermal_img_np = flir.thermal_image_np | |||
multiplied_image = cv2.multiply(thermal_img_np, 1000) | |||
output_file_path = os.path.join(png_output_dir, file + '.thermal.png') | |||
print(output_file_path) | |||
cv2.imwrite(output_file_path, multiplied_image.astype(np.uint16)) | |||
def make_thermalpng_svg(): | |||
""" | |||
replaces the image paths with the thermal pngs | |||
and creates new SVG file | |||
""" | |||
# print("svg_file") | |||
# print(dir(svg_file)) | |||
tree = ET.parse(INPUT_PATH) | |||
root = tree.getroot() | |||
# print(ET.tostring(root)) | |||
# tile_rows = root.xpath('//image', namespaces={'n': "http://www.w3.org/2000/svg"}) | |||
# print(dir(root)) | |||
tile_elements = root.xpath('//*[@class="thermal_image"]') | |||
linkattrib ='{http://www.w3.org/1999/xlink}href' | |||
for tile in tile_elements: | |||
tile.attrib[linkattrib] = os.path.join(THERMALPNG_DIR, tile.attrib[linkattrib] + '.thermal.png') | |||
# newxml = ET.tostring(tree, encoding="unicode") | |||
# print(newxml) | |||
# return newxml | |||
with open(TEMP_MAP_THERMALPNG_SVG_PATH, 'wb') as f: | |||
tree.write(f, encoding='utf-8') | |||
return tree | |||
def make_thermalpng(): | |||
""" | |||
exports the SVG canvas as Gray_16 PNG | |||
""" | |||
command = [ | |||
'/snap/bin/inkscape', | |||
'--pipe', | |||
'--export-type=png', | |||
'--export-png-color-mode=Gray_16' | |||
], | |||
input_file = open(TEMP_MAP_THERMALPNG_SVG_PATH, "rb") | |||
output_file = open(TEMP_MAP_THERMALPNG_PATH, "wb") | |||
completed = subprocess.run( | |||
*command, | |||
cwd=INPUT_DIR, # needed for reative image links | |||
stdin=input_file, | |||
stdout=output_file | |||
) | |||
return completed | |||
def make_thermalpreview(): | |||
""" | |||
exports the preview image | |||
""" | |||
command = [ | |||
'/snap/bin/inkscape', | |||
'--pipe', | |||
'--export-type=png', | |||
'--export-png-color-mode=Gray_8' | |||
], | |||
input_file = open(TEMP_MAP_THERMALPNG_SVG_PATH, "rb") | |||
output_file = open(TEMP_MAP_PREVIEW_PATH, "wb") | |||
completed = subprocess.run( | |||
*command, | |||
cwd=INPUT_DIR, # needed for reative image links | |||
stdin=input_file, | |||
stdout=output_file | |||
) | |||
return completed | |||
# def make_thermalpreview(): | |||
# """ | |||
# exports the preview image | |||
# """ | |||
# command = [ | |||
# '/snap/bin/inkscape', | |||
# '--pipe', | |||
# '--export-type=png', | |||
# '--export-png-color-mode=Gray_8' | |||
# ] | |||
# input_file = open(TEMP_MAP_THERMALPNG_SVG_PATH, "rb") | |||
# output_file = open(TEMP_MAP_PREVIEW_PATH, "wb") | |||
# completed = subprocess.run( | |||
# *command, | |||
# cwd=INPUT_DIR, # needed for reative image links | |||
# stdin=input_file, | |||
# stdout=output_file | |||
# ) | |||
# return completed | |||
def get_thermal_numpy_array(): | |||
# input_file = open(TEMP_MAP_THERMALPNG_PATH, "rb") | |||
image = cv2.imread(TEMP_MAP_THERMALPNG_PATH, cv2.IMREAD_ANYDEPTH) | |||
image_float = image.astype(np.float32) | |||
image_float_normalized = cv2.divide(image_float, 1000) | |||
print(image_float_normalized[1000][905]) | |||
# cv2.imshow("OpenCV Image Reading", image) | |||
return image_float_normalized | |||
def get_used_tiles_relpaths(): | |||
""" | |||
outputs an array of all used tile filenames in the input SVG | |||
(relative filepaths like they appear in the svg.) | |||
""" | |||
images = [] | |||
tree = ET.parse(INPUT_PATH) | |||
root = tree.getroot() | |||
tile_elements = root.xpath('//*[@class="thermal_image"]') | |||
linkattrib ='{http://www.w3.org/1999/xlink}href' | |||
for tile in tile_elements: | |||
images.append(tile.attrib[linkattrib]) | |||
return images | |||
def deg_coordinates_to_decimal(coordStr): | |||
coordArr = coordStr.split(', ') | |||
calculatedCoordArray = [] | |||
for calculation in coordArr: | |||
calculationArr = calculation.split('/') | |||
calculatedCoordArray.append(int(calculationArr[0]) / int(calculationArr[1])) | |||
degrees = calculatedCoordArray[0] | |||
minutes = calculatedCoordArray[1] | |||
seconds = calculatedCoordArray[2] | |||
decimal = (degrees + (minutes * 1/60) + (seconds * 1/60 * 1/60)) | |||
# print(decimal) | |||
return decimal | |||
def read_coordinates_from_tile(filename): | |||
full_filepath = os.path.join(INPUT_DIR, filename) | |||
with Image(filename=full_filepath) as image: | |||
for key, value in image.metadata.items(): | |||
if key == 'exif:GPSLatitude': | |||
# print('latstr', value) | |||
lat = deg_coordinates_to_decimal(value) # lat -> Y vertical | |||
if key == 'exif:GPSLongitude': | |||
# print('lonstr', value) | |||
lon = deg_coordinates_to_decimal(value) # lon -> X horizontal | |||
if key == 'exif:GPSImgDirection': | |||
direction = value.split('/') | |||
print(int(direction[0])/int(direction[1])/2, ' ', (value)) | |||
return [lat, lon] | |||
def get_coordinate_boundaries(): | |||
image_names = get_used_tiles_relpaths() | |||
coordinates = { | |||
'lat': [], | |||
'lon': [] | |||
} | |||
for filename in image_names: | |||
tile_coordinates = read_coordinates_from_tile(filename) | |||
coordinates['lat'].append(tile_coordinates[0]) | |||
coordinates['lon'].append(tile_coordinates[1]) | |||
boundaries = { | |||
'xmin': min(coordinates['lon']), | |||
'xmax': max(coordinates['lon']), | |||
'ymin': min(coordinates['lat']), | |||
'ymax': max(coordinates['lat']), | |||
} | |||
return boundaries | |||
def make_geotiff_image(): | |||
thermal_numpy_array = get_thermal_numpy_array() | |||
# coordinates of all tiles | |||
geo_bound = get_coordinate_boundaries() | |||
print('boundaries', geo_bound) | |||
np_shape = thermal_numpy_array.shape | |||
image_size = (np_shape[0], np_shape[1]) | |||
# set geotransform | |||
nx = image_size[0] | |||
ny = image_size[1] | |||
xres = (geo_bound['xmax'] - geo_bound['xmin']) / float(nx) | |||
yres = (geo_bound['ymax'] - geo_bound['ymin']) / float(ny) | |||
geotransform = (geo_bound['xmin'], xres, 0, geo_bound['ymax'], 0, -yres) | |||
# create the 3-band raster file | |||
dst_ds = gdal.GetDriverByName('GTiff').Create(OUTPUT_PATH, ny, nx, 1, gdal.GDT_Float32) | |||
dst_ds.SetGeoTransform(geotransform) # specify coords | |||
srs = osr.SpatialReference() # establish encoding | |||
res = srs.SetWellKnownGeogCS( "WGS84" ) # WGS84 lat/long | |||
dst_ds.SetProjection(srs.ExportToWkt()) # export coords to file | |||
dst_ds.GetRasterBand(1).WriteArray(thermal_numpy_array) # write thermal-band to the raster | |||
dst_ds.FlushCache() # write to disk | |||
# make_thermalpng_tiles() | |||
# make_thermalpng_svg() | |||
# make_thermalpreview() | |||
# make_thermalpng() | |||
make_geotiff_image() | |||
# dataset = gdal.Open("working_result_example.tif", gdal.GA_ReadOnly) | |||
# print(dir(dataset)) | |||
# print(dataset.GetMetadata_List()) |
@@ -0,0 +1,238 @@ | |||
from wand.image import Image | |||
import PIL.Image | |||
import io | |||
import exiftool | |||
import subprocess | |||
import os | |||
import lxml.etree as ET | |||
import copy | |||
import cv2 | |||
import flirimageextractor | |||
from matplotlib import cm | |||
import numpy as np | |||
import urllib.request | |||
dirname = os.path.dirname(__file__) | |||
working_dir = 'source_images_full' | |||
filename = os.path.join(dirname, 'canvas.svg') | |||
tree = ET.parse(filename) | |||
root = tree.getroot() | |||
d = root.nsmap | |||
main_layer = root.xpath('//*[@id="tiles"]', namespaces={'n': "http://www.w3.org/2000/svg"})[0] | |||
tile_rows = root.xpath('//*[@id="tile_rows"]', namespaces={'n': "http://www.w3.org/2000/svg"})[0] | |||
def deg_coordinates_to_decimal(coordStr): | |||
coordArr = value.split(', ') | |||
calculatedCoordArray = [] | |||
for calculation in coordArr: | |||
calculationArr = calculation.split('/') | |||
calculatedCoordArray.append(int(calculationArr[0]) / int(calculationArr[1])) | |||
degrees = calculatedCoordArray[0] | |||
minutes = calculatedCoordArray[1] | |||
seconds = calculatedCoordArray[2] | |||
return (degrees + (minutes * 1/60) + (seconds * 1/60 * 1/60)) | |||
# # extracting TIF Data | |||
# for root, directories, file in os.walk(os.path.join(dirname, working_dir)): | |||
# for file in file: | |||
# if(file.endswith(".jpg")): | |||
# print(os.path.join(root, file)) | |||
# full_filepath = os.path.join(root, file) | |||
# with exiftool.ExifTool() as et: | |||
# cmd = ['exiftool', full_filepath, "-b", "-RawThermalImage"] | |||
# tif_data = subprocess.check_output(cmd) | |||
# tif_image = PIL.Image.open(io.BytesIO(tif_data)) | |||
# tif_filepath = os.path.join(dirname, working_dir, file.split('.')[0] + '_thermal.tif') | |||
# tif_image.save(tif_filepath) | |||
# print(tif_filepath) | |||
# finding the boundaries of the whole canvas | |||
latsArr = [] | |||
lonsArr = [] | |||
for root_path, directories, file in os.walk(os.path.join(dirname, working_dir)): | |||
for file in file: | |||
if(file.endswith(".jpg")): | |||
print(os.path.join(root_path, file)) | |||
full_filepath = os.path.join(root_path, file) | |||
with Image(filename=full_filepath) as image: | |||
print(image.width) | |||
print(image.height) | |||
for key, value in image.metadata.items(): | |||
if key == 'exif:GPSLatitude': | |||
lat = deg_coordinates_to_decimal(value) # lat -> Y vertical | |||
latsArr.append(lat) | |||
print("{}: {}".format(key, value)) | |||
print('lat '+ str(lat)) | |||
if key == 'exif:GPSLongitude': | |||
lon = deg_coordinates_to_decimal(value) # lon -> X horizontal | |||
lonsArr.append(lon) | |||
print("{}: {}".format(key, value)) | |||
print('lon '+ str(lon)) | |||
minLat = min(latsArr) | |||
minLon = min(lonsArr) | |||
maxLat = max(latsArr) | |||
maxLon = max(lonsArr) | |||
width = maxLon - minLon | |||
height = maxLat- minLat | |||
# placing the images into the svg | |||
rotation = 125 | |||
y_scale = -1800000 #-400000 | |||
x_scale = 655000 #-950000 | |||
# y_scale = 2600000 #-400000 | |||
# x_scale = 1200000 #-950000 | |||
image_rotation_up = rotation #32 | |||
image_rotation_down = rotation + 180 #192 | |||
for root_path, directories, file in os.walk(os.path.join(dirname, working_dir)): | |||
for file in file: | |||
if(file.endswith(".jpg")): | |||
print(os.path.join(root_path, file)) | |||
full_filepath = os.path.join(root_path, file) | |||
with Image(filename=full_filepath) as image: | |||
print(image.width) | |||
print(image.height) | |||
for key, value in image.metadata.items(): | |||
# print("{}: {}".format(key, value)) | |||
if key == 'exif:GPSLatitude': | |||
lat = deg_coordinates_to_decimal(value) - minLat | |||
print('lat '+ str(lat)) | |||
if key == 'exif:GPSLongitude': | |||
lon = deg_coordinates_to_decimal(value) - minLon | |||
print('lon '+ str(lon)) | |||
if key == 'exif:GPSImgDirection': | |||
direction = value.split('/') | |||
rotation = int(direction[0])/int(direction[1])/2 | |||
g_pos_el_attributes = { | |||
# 'x': str(lat*scale), | |||
# 'y': str(lon*scale), | |||
'transform': "translate({}, {})".format(format(lon*x_scale, '.20f'), format(lat*y_scale, '.20f')), | |||
'data-lat': format(lat, '.20f'), | |||
'data-lon': format(lon, '.20f'), | |||
'class': 'tile', | |||
'id': 'tile_{}'.format(file.split('.')[0]), | |||
# 'style': 'opacity:.6', | |||
} | |||
g_pos_el = ET.SubElement(main_layer, 'g', attrib=g_pos_el_attributes) | |||
g_offset_corr_el_attributes = { | |||
'transform': "translate(150, 0)", | |||
'class': 'tile-offset-corr', | |||
} | |||
g_offset_corr_el = ET.SubElement(g_pos_el, 'g', attrib=g_offset_corr_el_attributes) | |||
g_center_el_attributes = { | |||
'class': 'tile-center', | |||
'transform': 'translate({}, {})'.format(str(image.width/2*-1), str(image.height/2*-1)) | |||
} | |||
g_center_el = ET.SubElement(g_offset_corr_el, 'g', attrib=g_center_el_attributes) | |||
g_rot_el_attributes = { | |||
'class': 'tile-rotate', | |||
'data-image-rotation': str(image_rotation_up), | |||
'data-image-dimensions': str(image.width/2) + ' ' + str(image.height/2), | |||
'transform': 'rotate({} {} {})'.format(str(image_rotation_up), str(image.width/2), str(image.height/2)) | |||
} | |||
g_rot_el = ET.SubElement(g_center_el, 'g', attrib=g_rot_el_attributes) | |||
xlinkns ="http://www.w3.org/1999/xlink" | |||
image_el = ET.SubElement(g_rot_el, 'image', { | |||
"class": 'thermal_image', | |||
"{%s}href" % xlinkns: file, | |||
"width": str(image.width), | |||
"height": str(image.height), | |||
"mask" : "url(#tilefademask)", | |||
}) | |||
# transform_str = "translate(-{}, -{})".format(str(min(latsArr)*scale), str(min(lonsArr)*scale)) | |||
# print(transform_str) | |||
# main_layer.attrib['transform'] = transform_str | |||
# sort elements | |||
def getkey(elem): | |||
# Used for sorting elements by @LIN. | |||
# returns a tuple of ints from the exploded @LIN value | |||
# '1.0' -> (1,0) | |||
# '1.0.1' -> (1,0,1) | |||
return float(elem.get('id').split('_')[2]) | |||
main_layer[:] = sorted(main_layer, key=getkey) | |||
# rotate image if previous element is under the current one | |||
last_state = 'down' | |||
for index, el in enumerate(main_layer): | |||
if(el.getprevious() is not None): | |||
if (el.getprevious().attrib['data-lon'] > el.attrib['data-lon'] or (el.getprevious().attrib['data-lon'] == el.attrib['data-lon'] and last_state == 'up')): | |||
print('up') | |||
rot_el = el[0][0][0] | |||
# print(rot_el.attrib['data-image-rotation']) | |||
# print(rot_el.attrib['data-image-dimensions']) | |||
el.attrib['data-direction'] = 'up' | |||
# print(el.attrib['data-lat'], el.getprevious().attrib['data-lat']) | |||
else: | |||
rot_el = el[0][0][0] | |||
el.attrib['data-direction'] = 'down' | |||
# el.attrib['style'] = 'opacity:0' | |||
new_rotation = image_rotation_down #float(rot_el.attrib['data-image-rotation']) + 180 | |||
rot_el.attrib['transform'] = "rotate({} {})".format(str(new_rotation), rot_el.attrib['data-image-dimensions']) | |||
print('down') | |||
# print(rot_el.attrib['data-image-rotation']) | |||
# print(rot_el.attrib['data-image-dimensions']) | |||
# merge tiles into groups | |||
print(index) | |||
print("el.attrib['data-direction'] " + el.attrib['data-direction']) | |||
print("last_state " + last_state) | |||
if index is 1 or last_state != el.attrib['data-direction']: | |||
current_row = ET.SubElement(tile_rows, 'g', attrib={ 'class': 'tile-row' }) | |||
copyElem = copy.deepcopy(el) | |||
current_row.insert(0, copyElem) | |||
last_state = el.attrib['data-direction'] | |||
root.remove(main_layer) | |||
with open(os.path.join(working_dir,'map.svg'), 'wb') as f: | |||
tree.write(f, encoding='utf-8') | |||
# # get some base satellite map for reference | |||
# apikey = "MYaMHCLtPz1fUfe0FzZqOMI35m893jIV80oeHG19Piw" | |||
# lon_center = | |||
# lat_center = | |||
# zoom = | |||
# map_width = | |||
# request = "https://image.maps.ls.hereapi.com/mia/1.6/mapview?apiKey={}&c={},{}&sb=mk&t=1&z={}&w={}&nodot".format(apikey, lon_center, lat_center, zoom, map_width) | |||
# svg = ET.tostring(tree, encoding="unicode") | |||
# print(svg) | |||
print('Done!') |
@@ -0,0 +1,197 @@ | |||
<?xml version="1.0" encoding="UTF-8" standalone="no"?> | |||
<!-- Created with Inkscape (http://www.inkscape.org/) --> | |||
<svg | |||
width="1920" | |||
height="1080" | |||
viewBox="0 0 1920 1080" | |||
version="1.1" | |||
id="svg8" | |||
sodipodi:docname="mask.svg" | |||
inkscape:version="1.1 (ce6663b3b7, 2021-05-25)" | |||
enable-background="new" | |||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" | |||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" | |||
xmlns:xlink="http://www.w3.org/1999/xlink" | |||
xmlns="http://www.w3.org/2000/svg" | |||
xmlns:svg="http://www.w3.org/2000/svg" | |||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" | |||
xmlns:cc="http://creativecommons.org/ns#" | |||
xmlns:dc="http://purl.org/dc/elements/1.1/"> | |||
<style | |||
id="style212248"> | |||
#image156515 { | |||
fill:#f00; | |||
} | |||
</style> | |||
<defs | |||
id="defs2"> | |||
<filter | |||
style="color-interpolation-filters:sRGB;" | |||
inkscape:label="Blur" | |||
id="filter156128" | |||
x="-0.225" | |||
y="-0.28125" | |||
width="1.45" | |||
height="1.5625"> | |||
<feGaussianBlur | |||
stdDeviation="20 20" | |||
result="fbSourceGraphic" | |||
id="feGaussianBlur156126" /> | |||
<feColorMatrix | |||
result="fbSourceGraphicAlpha" | |||
in="fbSourceGraphic" | |||
values="0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1 0" | |||
id="feColorMatrix156166" /> | |||
<feGaussianBlur | |||
id="feGaussianBlur156168" | |||
stdDeviation="20 20" | |||
result="fbSourceGraphic" | |||
in="fbSourceGraphic" /> | |||
<feColorMatrix | |||
result="fbSourceGraphicAlpha" | |||
in="fbSourceGraphic" | |||
values="0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1 0" | |||
id="feColorMatrix156188" /> | |||
<feGaussianBlur | |||
id="feGaussianBlur156190" | |||
stdDeviation="20 20" | |||
result="blur" | |||
in="fbSourceGraphic" /> | |||
</filter> | |||
<mask | |||
maskUnits="userSpaceOnUse" | |||
id="mask156376"> | |||
<rect | |||
id="rect156378" | |||
width="640" | |||
height="512" | |||
x="762.2807" | |||
y="227.90842" | |||
style="fill:#ffffff;filter:url(#filter156128)" | |||
transform="matrix(0.77703373,0,0,0.74018882,207.24036,100.70559)" /> | |||
</mask> | |||
</defs> | |||
<sodipodi:namedview | |||
id="base" | |||
pagecolor="#ffffff" | |||
bordercolor="#666666" | |||
borderopacity="1.0" | |||
inkscape:pageopacity="0.0" | |||
inkscape:pageshadow="2" | |||
inkscape:zoom="0.28748238" | |||
inkscape:cx="1087.0231" | |||
inkscape:cy="-401.76375" | |||
inkscape:document-units="px" | |||
inkscape:current-layer="layer1" | |||
showgrid="false" | |||
units="px" | |||
scale-x="1" | |||
inkscape:window-width="1920" | |||
inkscape:window-height="1016" | |||
inkscape:window-x="0" | |||
inkscape:window-y="27" | |||
inkscape:window-maximized="1" | |||
inkscape:pagecheckerboard="0" /> | |||
<metadata | |||
id="metadata5"> | |||
<rdf:RDF> | |||
<cc:Work | |||
rdf:about=""> | |||
<dc:format>image/svg+xml</dc:format> | |||
<dc:type | |||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /> | |||
<dc:title /> | |||
</cc:Work> | |||
</rdf:RDF> | |||
</metadata> | |||
<g | |||
inkscape:label="Layer 1" | |||
inkscape:groupmode="layer" | |||
id="layer1" | |||
transform="translate(0,-11.249983)" | |||
style=""> | |||
<g | |||
id="g155860" | |||
transform="translate(-728.00885,-195.75467)" | |||
mask="url(#mask156376)"> | |||
<image | |||
width="640" | |||
height="512" | |||
preserveAspectRatio="none" | |||
xlink:href="source_images_full/20200621_125946_R.jpg" | |||
id="image155751" | |||
x="728.00885" | |||
y="207.00465" /> | |||
</g> | |||
<image | |||
width="640" | |||
height="512" | |||
preserveAspectRatio="none" | |||
xlink:href="source_images_full/20200621_125920_R.jpg" | |||
id="image156515" | |||
x="780" | |||
y="-80.464302" | |||
style="" /> | |||
<image | |||
width="640" | |||
height="512" | |||
preserveAspectRatio="none" | |||
xlink:href="source_images_full/20200621_125921_R.jpg" | |||
id="image156527" | |||
x="1368.5714" | |||
y="616.67853" /> | |||
<image | |||
width="640" | |||
height="512" | |||
preserveAspectRatio="none" | |||
xlink:href="source_images_full/20200621_125922_R.jpg" | |||
id="image156539" | |||
x="1751.8823" | |||
y="-283.38199" /> | |||
<image | |||
width="640" | |||
height="512" | |||
preserveAspectRatio="none" | |||
xlink:href="source_images_full/20200621_125924_R.jpg" | |||
id="image156563" | |||
x="1785.2552" | |||
y="-97.210777" /> | |||
<image | |||
width="640" | |||
height="512" | |||
preserveAspectRatio="none" | |||
xlink:href="source_images_full/20200621_125923_R.jpg" | |||
id="image156551" | |||
x="1772.9646" | |||
y="-189.51526" /> | |||
<image | |||
width="640" | |||
height="512" | |||
preserveAspectRatio="none" | |||
xlink:href="source_images_full/20200621_125925_R.jpg" | |||
id="image156575" | |||
x="1800.0695" | |||
y="1.4803357" /> | |||
<image | |||
width="640" | |||
height="512" | |||
preserveAspectRatio="none" | |||
xlink:href="source_images_full/20200621_125926_R.jpg" | |||
id="image156587" | |||
x="1810.1398" | |||
y="115.43749" /> | |||
<image | |||
width="640" | |||
height="512" | |||
preserveAspectRatio="none" | |||
xlink:href="source_images_full/20200621_125927_R.jpg" | |||
id="image156599" | |||
x="1830.4902" | |||
y="197.49077" /> | |||
<path | |||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" | |||
d="m 2391.8823,-283.38199 78.6079,480.87276" | |||
id="path156735" /> | |||
</g> | |||
</svg> |
@@ -0,0 +1,43 @@ | |||
import cv2 | |||
# import flirimageextractor | |||
# flir = flirimageextractor.FlirImageExtractor() | |||
# flir.process_image('source_images_full/20200621_125936_R.jpg',RGB=True) | |||
# c = flir.get_metadata('source_images_full/20200621_125936_R.jpg') | |||
# img = flir.extract_embedded_image() | |||
import flirimageextractor | |||
from matplotlib import cm | |||
import numpy as np | |||
# flir = flirimageextractor.FlirImageExtractor() | |||
# flir.process_image('source_images_full/20200621_125936_R.jpg') | |||
# flir.save_images() | |||
# flir.plot() | |||
flir = flirimageextractor.FlirImageExtractor() | |||
flir.process_image('source_images_full/20200621_125936_R.jpg') | |||
# img = flir.save_images() #min=0,max=64, | |||
# print(dir(img)) | |||
# print(img) | |||
thermal_img_np = flir.thermal_image_np | |||
h,w = thermal_img_np.shape | |||
# print(flir.flir_img_bytes()) | |||
print(thermal_img_np) | |||
print(type(thermal_img_np[0][0])) | |||
print(h) | |||
print(w) | |||
# cv2.imdecode(thermal_img_np) | |||
multiplied_image = cv2.multiply(thermal_img_np, 1000) | |||
cv2.imwrite('color_img.png', multiplied_image.astype(np.uint16)) | |||
# img.astype('uint8') | |||
# image = cv2.imdecode(thermal_img_np,4) | |||
# print('Image Dimensions :', image.shape) |